Cauchy sequence S (§ 3.5 in textbook)

\n

Q: When is (Xn) convergent (without knowing its limit)?		
AI: "MCT" $bdd + monotone =$) convergent		
BUT '<=" is False	Es	(x _n) = $\left(\frac{(-1)^n}{n}\right) \rightarrow \infty$
A2: "Cauchy" (=)	convergent	
DEI ² : A seq. (Xn) is called Cauchy if		
V \epsilon > 0. $\exists H = H(\epsilon) \in \mathbb{N}$ st.		
$ X_n - X_m \leq \epsilon$ V n, m $\geq H$		
sumak: Compared to the ϵ = K def ² for convergence of Xn.		

\nRemark: Compared to the ϵ = K def² for convergence of Xn.

we Do NOT need to refer the potential limit X. Example 1: $(x_n) = \left(\frac{1}{n}\right)$ is Canchy (Also $\left(\frac{1}{n}\right) \rightarrow 0$)

 Pf : Let ϵ 20 be fixed but arbitrary.

$$
Chos2e H \in IN \quad \text{st.} \quad H \geq \frac{2}{\epsilon}
$$

Then, \forall n, $m \geq 1$.

$$
|\chi_n - \chi_m| = |\frac{1}{n} - \frac{1}{m}| \le \frac{1}{n} + \frac{1}{m} \le \frac{1}{H} + \frac{1}{H} = \frac{2}{H} < \epsilon
$$

Example 2	1. (Xn) := (1 + (-1) ⁿ) is NOT Cauchy
\n $\frac{Pf}{f}$: n odd : $x_{n} = 1 - 1 = 0$ \n	\n $(x_{n}) = (0, 2, 0, 2, 0, 2, ...)$ \n
\n $1 = 0$ \n	\n $x_{n} = 0.2, 0.3, 0.2, ...$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$ \n	\n $1 = 0$ \n
\n $1 = 0$	

Fix M = H, then by reverse Δ -ineg and the above. $| |x_{n}| - |x_{H}| |$ < $|x_{n} - x_{H}| < 1$ $\forall n \geq H$ $|x_{n}| \leq |x_{n}| + 1$ $\forall n \geq H$ っ Take $M := max \{ |x_1|, ..., |x_{H-1}|, |x_H|+1 \}$ Then, I xn1 $\leq M$, V n $\in M$. ie (xn) is bdd. Claim 2: (In) is convergent potential Candidate For our binet Pf of Claim: Since (xn) is bold by Claim 1. "BWT" => = Convergent subseq. $(x_{n_k}) \rightarrow x \in \mathbb{R}$. Want to show: $(\chi_n) \rightarrow \chi$ By Canchy def", let E > 0 be fixed but arbitrary. then $\exists H = H(\frac{\epsilon}{2}) \in \mathbb{N}$ st. $|X_m - X_n| < \frac{\epsilon}{2}$ $\forall n. m > H$ (4) Since the subseq. $(3n_k) \rightarrow x$ as $k \rightarrow \infty$, by def? \exists K = K ($\frac{\xi}{2}$) G IN st V k ? K – (**) $|x_{n_k} - x| < \frac{\epsilon}{2}$ Fix a $k \ge K$ st $n_k \ge H$. They. Vn>, H, we have $|x_n - x|$ \leq $|x_n - x_{n_k}| + |x_{n_k} - x|$ $\leq \frac{z}{2} + \frac{z}{2} = \epsilon$ (44) \bullet $($

Example: Let (2n) be the sequence defined by $\chi_1 := 1$; $\chi_2 = 2$; $\chi_n := \frac{1}{2}(\chi_{n-1} + \chi_{n-2})$ $\forall n \ge 3$. Show that (xn) is convergent and find lim (xn). $(\chi_n) := (1, 2, 1.5, 1.75, 1.625, \dots)$ Think: bdd. NOT monotone...... Pf: By M.I. (Frera'se), we have \bullet $1 \leq x_n \leq 2$ Vne IN • $|\chi_{n+1} - \chi_n| = \frac{1}{2^{n-1}}$ $\forall n \in \mathbb{N}$ Claim: (xn) is Cauchy If of Claim: Let E 20 be fixed but orbitrary. Choose HEN st. $H > \frac{4}{5}$. Then. V m, n > H, we want to show $|X_m - X_n| \in \mathbb{S}$ $\forall m, n \geq H$ $W.L.0.G.$ assume $M > n > H$.

$$
|\mathfrak{X}_{m} - \mathfrak{X}_{n}| \leq |\mathfrak{X}_{m} - \mathfrak{X}_{m-1}| + |\mathfrak{X}_{m-1} - \mathfrak{X}_{m-2}| + \cdots + |\mathfrak{X}_{n+1} - \mathfrak{X}_{n}|
$$

\n
$$
= \frac{1}{2^{m-1}} + \frac{1}{2^{m-3}} + \cdots + \frac{1}{2^{n-1}}
$$

\n
$$
= \frac{1}{2^{n-1}} \left(1 + \frac{1}{2} + \frac{1}{2^{1}} + \cdots + \frac{1}{2^{m-n}} \right)
$$

\n
$$
< \frac{1}{2^{n-1}} \cdot 2 = \frac{1}{2^{n-3}} \leq 4 \cdot \frac{1}{2^{1}} \leq 4 \cdot \frac{1}{11} < \epsilon
$$

 \cdots By Canchy Criteria, lim (In) =: x exists. $\int \chi_h = \frac{1}{2} (x_{n-1} + x_{n-1})$

Teke $n \to \infty$,
 $x = \frac{1}{2} (x + x) = x$ Consider the subseq. (22k-1) kGN Note: $\lim_{k \to \infty} (x_{2k-1}) = x$ $\chi_{2k-1} = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^5} + \cdots + \frac{1}{2^{2k-3}}$ nut helpful = 1 + $\frac{\frac{1}{2}(1-\frac{1}{4k_1})}{1-\frac{1}{4k_1}}$ Take $k \to \infty$. We have $x = 1 + \frac{1/2}{3/4} = \frac{5}{3}$